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Abstract--Experimentally determined attenuation and propagation characteristics are presented for small 
amplitude concentration waves in vertical bubbly and particulate flows. These were studied up to 
concentrations of 44.3 and 58%, respectively, in a I0 cm pipe. The wave propagation was studied in terms 
of the time delay, phase lag and loss of coherence of naturally occurring volume fraction fluctuations by 
means of simultaneous impedance measurements at two separate locations. Small amplitude natural 
kinematic waves were confirmed to be non-dispersive, as has previously been shown by other investigators. 
In this system configuration, bubbly flows undergo a regime transition to churn-turbulence, and not to 
slug flows as is typically observed in smaller diameter pipes, A dramatic drop in the attenuation time 
constant of small kinematic waves was found prior to the transition to churn-turbulence in gas-liquid 
flows, indicating that the regime change is the consequence of a loss of kinematic stability. The solid-liquid 
mixtures studied were found to always remain stable, with a range of greatest stability between 15-20%, 
as indicated by a maximum in the kinematic wave attenuation constant. The idea of a stable intermediate 
range of concentrations is consistent with the observations by Homsy et al. [Int. J. Multiphase Flow 6, 
305-318 (1980)], who first observed structure formation above and below such a range. At concentrations 
above 40%, gradual transition to plug flow occurs, in which the particles execute little or no motion 
relative to one another. 
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1. I N T R O D U C T I O N  

While the motion of individual bubbles and particles have been studied extensively [see Wallis 
(1969) or Clift et al. (1978) for a review], the behavior of collections of monodispersed bubbles and 
particles remain less well understood. Due to the complexity of such flows at high concentrations, 
they have mostly been studied in terms of averaged quantities, and it is recognized that continuity 
wave propagation plays an important role in their behavior. These waves were first studied by 
Kynch (1952) in the context of sedimentation where the interest in their propagation was primarily 
motivated by the method of analysis, the method of characteristics. This work has since been 
generalized to inclined flows for the different flow regimes of both gas-liquid and solid-liquid flows 
(Zuber & Findlay 1965; Wallis 1969). 

The kinematics of two-component flows are central to understanding their low frequency 
behavior and flow stability in the presence of slip. The kinematics of liquid-solid systems have been 
studied extensively in the context of fluidized beds (Zenz 1971; Homsy et al. 1980; Jackson 1985; 
Batchelor 1988) in an attempt to better understand fluidized bed stability and the causes of"bubble 
formation". It is generally agreed that the onset of instability is caused by the initial growth of 
planar concentration waves that, depending on the conditions, may or may not break-up into 
three-dimensional structures. Disagreement exists regarding the details of the stability criteria in 
terms of the system parameters, although all recent studies indicate that strong particle-particle 
interactions have a stabilizing effect. The discussion on the nature of such interactions has 
previously focused on the experimentally elusive dispersed phase pressure (Jackson 1985; Homsy 
et al. 1980), with inconclusive results. Recently, Batchelor (1988) demonstrated that the dispersed 
phase diffusion is the dominant factor in kinematic stability. 
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In gas-liquid systems, both industrial needs, and a vacuum of good data for comparison with 
developments in models have motivated ongoing efforts. Several recent studies have focused on the 
propagation of concentration waves in vertical gas-liquid flows (Mercadier 1981; Bernier 1982; 
Bour6 & Mercadier 1982; Pauchon & Banerjee 1986). Using either resistive or beam attenuation 
techniques, it has been shown that it is relatively easier to measure kinematic wave speeds than 
their attenuation. The above studies addressed wave propagation in stable bubbly flows in circular 
and square channel cross sections ranging in linear dimension between 2 and 10 cm. The two studies 
that have investigated larger concentrations and regime change (Tournaire 1987; Matuszkiewicz 
et al. 1987) limited themselves to small tubes (2.5 cm dia and 2 cm 2, respectively) in which wall shear 
stresses have an important influence on the nature of the flow and regime transitions. For these 
channel dimensions, bubbly flows undergo transition to slug flow. 

In this study, the propagation and attenuation of natural concentration waves were studied in 
low superficial velocity solid-liquid and gas-liquid flows in a vertical pipe of much larger diameter 
than the bubbles or particles. This choice was made to accommodate gas-liquid flows with a 
transition to churn-turbulence rather than slug flow to complement existing results. Stable bubbly 
gas-liquid flows were attained up to concentrations of 44.3%, and their behavior was documented 
up to the transition to churn-turbulence. Similarly, solid-liquid flows were studied up to a solids 
concentration of 58% and were observed to gradually assume a rigid structure with no relative 
motion between particles, at concentrations above 40%. In this paper, this regime is called plug flow. 

2. E X P E R I M E N T A L  FACILITY 

The three-component flow facility (TCFF) used for the solid-liquid and gas-liquid study is 
shown in figure 1. The test section is a vertical clear acrylic pipe, 102 mm dia and 2.2 m long. Bubbly 
flows are formed by introducing the gas through an injector situated inside the vertical pipe, 0.5 m 
below the test section. It consists of an array of 12 3.2-mm dia brass tubes perforated with 0.4 mm 
holes, located to give a uniform bubble distribution over the cross section. A 0.8 MPa compressed 
air line supplies the injector through a regulator, an orifice plate flowmeter (to monitor the air mass 
flow), valves to control the air flow and a manifold to distribute the air flow evenly among the 
brass tubes. 

The solid-liquid mixture consists of water and polyester particles. The facility is able to internally 
handle the solids and to control their flowrate independently of the liquid without external addition 
or removal. When at rest prior to an experiment the solids are trapped between a vertical 10 cm 
control cylinder and the storage hopper (see figure 1). As the control cylinder is raised from the 
reducer on top of which it sits, the gap created allows particles to enter the test section under the 
action of gravity. The solids flowrate is varied by adjusting this gap by means of a control rod 
attached to the cylinder. The solids are recycled after an experiment by fluidization back to the 
upper hopper where they settle into their original position with the control cylinder in its lowered 
position. 

The mean bubble and polyester particle diameters were 4 mm ( _  0.5 mm) and 3 mm ( _  0.5 mm), 
respectively. Only low flowrates were studied; the liquid fluxes of all two-component flows 
considered were no larger than 0.2 m/s. 

The volume fraction of the dispersed medium is measured using a non-intrusive impedance 
volume fraction meter (IVFM). It operates on the same principle as the one developed by Bernier 
(1982) and has been equiped with temperature compensation and a shielded electrode configuration 
to decrease the axial extent of the measuring volume. The active stainless steel electrodes (6.4 mm 
high) are flush mounted into a section of 102 mm dia non-conducting acrylic pipe, and form 
diametrically opposed 90 ° arcs on the circumference of the pipe. The active electrodes are each 
sandwiched between two shielding electrodes. These are 9.5 mm in axial length and also form 90 ° 
arcs. Figure 2 shows the electrode configuration. The shielding electrodes duplicate the active 
electrode potential through a high input impedance voltage follower. The IVFM is excited at an 
amplitude of 0.3 V r.m.s, and a frequency of 40 kHz at which the impedance is found to be 
primarily resistive. The active electrode pair is connected in a bridge configuration. Its offset voltage 
is demodulated by multiplication to the driving signal, followed by removal of the 80 kHz signal 
using a low-pass filter. The remaining low frequency signal is caused by fluctuations in the volume 



SMALL AMPLITUDE KINEMATIC WAVE PROPAGATION IN TWO-COMPONENT MEDIA 

AIR 

• S C R E E N  

15 

UPPER TANI 
(50cmi.d.) 

SOLIDS ~ ~1-  CONTR 
]E .  M. FLOWMETER CYLINDER CONTROL " ] ~  " ~ ' R O D  

I [ LUCITE 
W O R K I N G  , 

I 10 cm I.D.) 

I = 

I -VOID 
2.30 m FRACTION 

METERS RESERVOIR 

B U T T E R F L Y  V A L V E  

G A T E  V A L V E  

UPWARD DOWNWARD 
PUMPING PUMPING 

OPEN 2 ,6  3, 5 
CLOSED 5, 3, I 2 ,6 ,  I 
FLOW 4, 7 4, 7 (or3) 
CONTROL 

i 
:L 

SI 

\ 

~} FLOOR 

AIR 
INJECTOR 

Figure 1. Schematic of the three-component flow facility. 
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fraction. The IVFM has excellent linearity for both bubbly and particulate flows up to volume 
fractions of 50%, as shown by hydrostatic calibration at low liquid superficial velocities (Kyt6maa 
& Brennen 1988). With a sensitivity of 0.15 V/percent of volume fraction, the passage of individual 
bubbles (or particles) is readily detectable. 

3. THE C R O S S - C O R R E L A T I O N  F U N C T I O N  AND ITS I N T E R P R E T A T I O N  

By means of a dynamic calibration in which the passage of individual particles (or bubbles) is 
modeled as a random shot noise process, it was established that the spatial resolution of the IVFM 
is of the order of I cm in the axial direction (Kyt6maa 1987; Kyt6maa & Brennen 1988), and that 
the influence volume of the measurement remains unchanged for all volume fractions and flowrates 
considered. These properties make the IVFM suitable for the study of volume fraction pertur- 
bations over a broad range of wavelengths and allow the IVFMs to be used close to one another 
without the problem of cross-talk. Measurements of the fluctuations in the volume fraction signal 
were made simultaneously at two closely spaced locations (separation, h = 0.0735 m) under steady 
flow and volume fraction conditions for both bubbly and particulate flows. 

The IVFM fluctuating component was obtained by passing the IVFM output signal through a 
high-pass filter with a 3 dB cutoff frequency of 0.032 Hz and a fall off slope of 10 dB/octave. The 
filter output was recorded on magnetic tape for reduction. The record lengths were as long as 
20 min for bubbly flow measurements and no shorter than 1 min for particulate flows. Cross- 
correlations of simultaneously recorded data from the two IVFMs were obtained on an HP 3562a 
signal processor. Repeatable cross-corrclograms were obtained by ensemble averaging the measure- 
mcnts with ensembles ranging in length between I-I0 s. These yielded the residence time of coherent 
waves between the two concentration transducers. Typical measured cross-correlation records are 
shown in figure 3. The residence time, Zm~, is obtained from the location of the peak in the 
cross-corrclograms. Knowing the time taken by thc coherent signal to travel from one IVFM to 
the other, and the distance, h, between thc electrode pairs, wc calculate the speed of propagation 
information, vx in the two-component flows in question: 

h 
vx = • [I] 

Tmax 

This propagation velocity is shown as a function of the volume fraction of the dispersed phase in 
figure 4 for bubbly flows and in figure 5 for solid-liquid flows. Thcsc speeds arc compared with 
the infinitesimal kinematic wave velocities, shown as a solid curve, obtained using the drift flux 
model (Zubcr & Findlay 1965; Zubcr & Staub 1966; Wallis 1969). This confirms that the velocity 
obtained with this cross-section correlation method is the kinematic wave speed as intended, not 
the speed of the dispersed inclusions. 

Indeed, the cross-correlation of point volume fraction measurements as obtained with hot 
film anemometers or fiber optic probes separated by a small distance (of the order of the 
diameter of the dispersed medium) typically yields the dispersed medium (bubble) velocity. The 
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cross-correlation based speeds were also compared to the bubble and particle speeds to confirm 
that vx  was the kinematic velocity. The bubble speed relative to the liquid is obtained from the 
measured air and water fluxes (]G and JL) and the volume fraction, e, using 

JG JL 
VG = A t  A (1 -- ~)" [2] 

In polyester particle-water flows the particle velocity relative to the water was obtained indirectly 
by measuring the propagation speed of finite kinematic shocks. This method was tested with bubbly 
flows and showed to be a consistent method of determining the disperse medium velocity. 

The results eliminate the ambiguity in the interpretation of our measurements and confirm that 
the cross-correlation of the volume fraction fluctuations (as measured using the IVFMs) yields the 
speed of infinitesimal kinematic waves for bubbly and solid-liquid flows. These findings agree well 
with those of other investigators (Mercadier 1981; Bernier 1982; Bour6 & Mercadier 1982; Pauchon 
& Banerjee 1987; Matuszkiewicz et  al. 1987; Tournaire 1987; Saiz-Jabardo & Bour6 1989). 

4. T H E  N O N - D I S P E R S I V E  N A T U R E  OF I N F I N I T E S I M A L  K I N E M A T I C  W A V E S  

In this section we turn our attention to the propagation and attenuation of structure in vertical 
two-component flows. A measure of the structure is obtained from the statistical properties of the 
fluctuations in the volume fraction signal. The continuous reordering of the disperse species in the 
stable steady two-component flows observed is represented below in terms of attenuation of the 
coherent signal from one IVFM to the other. The power spectra of volume fraction fluctuations 
at two different locations in a kinematically stable flow were found to be consistently equal within 
the inherent noise level of the spectra. Experimentally obtained power spectra demonstrate this 
feature in figure 6 for two different values of the volume fraction for bubbly flows. In the present 
results, only flows that exhibited no change in the power spectrum from one measuring station to 
the other were considered. Therefore, the amplitude of the uncorrelated component of the signal 
at the downstream location must be equal to the attenuated component of the coherent signal, to 
remain consistent with the constant power spectra at the two IVFMs. In general, both the 
attenuation of the kinematic waves and their residence time between the IVFMs depend on the 
wavenumber. For this reason, the model is best presented in the frequency domain. For kinematic 
waves traveling from IVFM 1 to IVFM2, the Fourier-transform of the measured fluctuations can 
therefore be written as 

¢r (co) = ~ e-'O'~ r, (t) dt [3] 
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and 

92(co ) = ((co)e-i~r(~)91 (co) + 92R, [4] 

where ((co) is the wavenumber dependent attenuation (or gain if > 1) and T(co) is the transit time 
of the perturbation of frequency co between the two detector positions. The factor e - ~ )  is the 
characteristic "time delay exponential" which arises when taking the Fourier-transform of a signal 
with a time lag T(co). The quantity 92R is the fluctuating term which is not correlated with 9~. 

To evaluate the wavenumber dependence of the kinematic velocity, we determine the delay time 
dependence on the wavenumber. The cross-power spectrum of the fluctuations of IVFM1 and 
IVFM2 contains this information in its phase. The cross-power spectrum of the two signals is 

s~, ~2 = 9*  (co)92 (co), [5] 

where a superscript • denotes the complex conjugate. Substituting [4] into [5] we obtain 

S~, ~2 = ( ( cO)e- ~r~°~lS~¢, ~t, [6] 

where S~9 t is the power spectrum of the fluctuations of IVFMI,  

S~,~t = 9* (co)9, (co). [7] 

Since the power spectrum $9, ~, is a real function, it follows that the phase 4)(co) of the cross-power 
spectrum in [6] is 

~(co) = -coT(o) .  [8] 

The cross-power spectrum phase, ~b (co), was evaluated for the recorded experimental data. Typical 
results are shown in figure 7. The phase was found to be linear in co in the region where the 
cross-power spectrum amplitude is significant, for both bubbly and particulate flows. The 
independence of T(co) on the frequency co confirms that naturally occurring kinematic waves are 
non-dispersive, as has been shown by others [see Jackson (1985) for solids and Saiz-Jabardo & 
Bour6 (1989) for bubbles], and the slope of the phase was found to be consistent with measured 
residence times. This validates the use of the cross-correlation in determining small amplitude 
kinematic speeds, and makes it a valuable tool in determining the attenuation time constant of 
kinematic waves, as shown in the following section. Since all wavelengths travel at the same speed 
we can represent the frequency in terms of a more physical quantity, namely the wavenumber N, 
which is related to the frequency through the following equation: 

CO 
N = - - ,  [9] 

/?X 

where vx is the kinematic wave speed. 

5. THE A T T E N U A T I O N  OF SMALL A M P L I T U D E  K I N E M A T I C  WAVES 

The main motivation behind shielding the electrodes of the IVFM was to improve the spatial 
resolution of the device, thereby allowing us to study the properties of short wavelength 
infinitesimal kinematic waves ( < 0.1 m) which have eluded many authors due to the large geometry 
of their measuring devices. This was successfully accomplished, as indicated by the power spectra 
in figure 6 which contain wavelength information down to 0.05 m. 

We now seek the attenuation of infinitesimal kinematic waves as a function of the wavenumber. 
This is readily obtained from the gain factor H(N) defined below. It is < 1 if the waves are 
attenuated and > 1 if they grow. Under the conditions of invariant power spectra, H(N) is equal 
to the coherence function, ~(N): 

H(N) = IShmael = 7(N) = IS~9:J [I0] 
S~,l ~l ~/Sr¢~ r¢~ 892~v 2 ' 
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In the present experiments, coherent information is always attenuated and therefore, y(N) is 
always < 1. It can be verified that the signals from the two measuring locations contained no 
coherent external noise unrelated to the phenomenon of interest from the nature of the 
cross-correlograms of the two channels. In the presence of such parasitic noise these would reveal 
peaks in the cross-correlation close to z = 0, which were never observed. Substituting for S~,~ 2 from 
[6] we get 

7(N) = ~(N). [11] 

The coherence function is identical to the previously defined attenuation. Results for both 
bubbly and particulate flows are shown in figures 8 and 9. These are shown in terms of a 
reduced wavenumber, n, which is defined as n = ND, where D is the mean diameter of the dispersed 
phase. For both types of flows, these show an increased persistence in volume fraction fluctuations 
as the volume fraction is increased, but they never reach an unstable state, and the coherence 
remains < 1. 

5.1. Attenuation of fluctuations 
Since the kinematic wave speed varies as a function of the mean volume fraction (figure 3), a 

general representation of the attenuation of small waves can be made in terms of coordinates 
following the wave rather than fixed laboratory coordinates, as used by Saiz-Jabardo and others. 
Assuming that the waves are attenuated exponentially, we write 

7(N) = e -k(mr, [12] 
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where k is the wavenumber dependent attenuation time constant of infinitesimal kinematic 
waves and T is the residence time of the wave between the two measuring locations. This linear 
form is valid for small fluctuations in the volume fraction signal, which is the case here since 
the system is stable and fluctuations die away, i.e. k > 0. Taking the natural logarithm of [12] 
yields 

k (N) = - 1 ln[~ (N)]. [13] 

The delay time T is known from the cross-correlation analysis. This equation provides a 
way of determining the attenuation relation, k(N), from the existing coherence information. 
The number k(N) is always positive and for convenience it is presented in reduced form in 
figures 10 and 11 for bubbles and solids, respectively. The reduced attenuation time constant is 
defined as 

kD 
. - ~ -  - -  , 

K Vo []4] 

where V0 is the terminal velocity of a bubble or particle relative to the continuous medium at zero 
volume fraction. 

The measurements of all flow conditions investigated were reduced to this form. The reduced 
attenuation time constants curves all exhibit similar features. Although all wavenumbers 
are attenuated, there is always a least-attenuated wavenumber. In the following section, the 
magnitude of the minimum attenuation and the corresponding wavenumber are discussed in 
detail. 
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6. RESULTS AND D IS CU S S IO N  

6.1. Error analysis 

For all volume fractions of both bubbly and particulate flows, the coherence function exhibits 
a peak which corresponds to the most persistent wavenumber. These experimental coherence traces 
contain some scatter in the form of  non-repeatable fluctuations. Prior to presenting these 
measurements, it is appropriate to discuss the magnitude and source of this error. It is due to the 
finite length of  our records, and is inversely proportional to the square root of the number of  
ensembles, n e. Hence, for the best results, one should maximize the number of ensembles and the 
duration of the experiments themselves. Due to their batch nature, the solid-liquid flows were 
limited in duration, and the solids reservoir was depleted more rapidly at high concentrations and 
high flows. The shortest flow duration was 1 min, while, for comparison, the duration of all bubbly 
experiments was at least 20 min. In terms of coherence amplitude and the number, G, of ensembles, 
the error in coherence ~ can be written as 

[1 - -  T 2] 1 

according to which, the fractional coherence error decreases at high coherences. This is also evident 
in the experimental coherence "noise level"; the random error is larger at low coherences. Since 
we are most interested in persistent and hence high coherence waves, the "noisy" least significant 
data are of  little interest to us. The above equation yields an estimate of the random error of 0.21 
for the shortest records (n = 100, 7 = 0.5 for particulate flows), and of  0.061 for the longest records 
(n = 1200, y = 0.5 for liquid flows). The error in the time constant, which is algebraically derived 
from the coherence, is 

6k by fiT 
k 7 ln(7)-i T ' [16] 

where T is the delay time between the two measuring stations. From the cross-correlation data, 
6 T / T  is estimated at 0.05 for bubbly flows and 0.2 for the shorter duration particulate flows. From 
these estimates, the compounded maximum error in the time constant k was computed: 

and 

6k 0.64 for solid-liquid flows [17] 
k ~=05 

6k ~.= 05 ~-  = 0.18 for bubbly flows. [18] 

It should be noted that these errors are very sensitive to the actual value of 7, and decrease 
dramatically with higher coherence. 

6.2. Gas-liquid flows and the transition to churn-turbulence 

According to the coherence measurements, the minimum attenuation time constant is found to 
undergo a gradual decrease up to an air volume fraction of 40%, as shown in figure 12. Upon a 
further increase in the volume fraction, x decreases abruptly from a value of 0.03 to <0.003 at 
44.3%, while the flow remains bubbly and uniform with no visible fast, large-scale structures. This 
sudden fall in x is accompanied by a shift in the most persistent wavenumber nrnin from 0.07 to  

0.03, as shown in figure 13. These values correspond to kinematic perturbation wavelengths of  0.3 
and 0.8 m, respectively, which are large in relation to the pipe diameter of  102 mm. 

Upon a further increase in the air flux, in an attempt to reach a bubbly flow concentration of 
45%, large fast rising structures become visible, the flow takes on an agitated nature and the 
volume fraction immediately drops to a value of approx. 35%, indicating that the mean gas velocity 
has suddenly risen. Transition to churn-turbulence has occurred. If we were to extrapolate the 
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experimental x curve for larger values of the volume fraction, x would cross the horizontal axis 
at e ~ 45%. This coincides very closely with the concentration at which the regime change is first 
observed. These results suggest that the observed onset of churn-turbulence is the consequence of 
the loss of stability of the small ambient perturbations in the volume fraction. This stability sets 
in at the wavenumber where the attenuation time constant curve meets the wavenumber axis. 
According to figure 13, this reduced wavenumber is 0.03. The flow undergoes a regime transition 
at a concentration of 45%. In the new flow regime, which is a non-linear manifestation of the 
instability, it is impossible to experimentally infer wave attenuation time constants of higher 
concentrations, but if the variation of the attenuation curves continues along the same trend, the 
small amplitude analysis indicates that higher gas volume fraction mixtures may be unstable over 
a range of wavenumbers and concentrations. 

To summarize the attenuation results of the present experiments on bubbly flows, table 1 shows 
the dimensional attenuation time constant k (s-~) for three values of the void fraction as a function 
of the wavelength 2 of the perturbation. 

The only other comprehensive collection of attenuation data for stable bubbly flows available 
is in Tournaire's (1987) doctoral thesis, for a 25 mm pipe with imposed perturbations. His data 
are summarized in a similar form in table 2. 

In this smaller system, the highest concentration attained for stable bubbly flows was 30.6%, 
above which transition occurred. 

At low concentrations, the attenuation is generally greater for smaller wavelengths. The first 
distinct difference between the two systems is the noticeably lower attenuation constants k observed 
at low to intermediate void fractions in the 25 mm pipe. For concentrations < 20%, the difference 
is an order of magnitude below the present values. 

Prior to transition at e = 0.255, Tournaire (1987) also found a drop in the attenuation constant 
k, and unlike his at low e, k assumes a minimum which indicates that there is a wavelength that 
is the most persistent. He found this wavelength to be 0.55 m, which is shorter than the 
corresponding value of 0.8 m in the current system. 

The two systems yield markedly different quantitative results, while they exhibit similar 
qualitative behavior. Tournaire's results show that for stable bubbly flows, axial variations in 
propagation speed and attenuation are minimal, hence these differences cannot be attributed to 
entrance or flow development effects. On the other hand, the two systems have approximately the 
same bubble size, while Tournaire's pipe is a quarter of the current one in diameter. This strongly 
suggests that the wall effect, which can be represented in terms of the ratio Dbubble/Dpi~, plays a 
major role in the attenuation of kinematic waves, and a better understanding of the effects of this 
parameter is needed. 

6.3. Solid-liquid flows and the transition to plug flow 
The attenuation data for solid-liquid flows are plotted in figures 14 and 15. Their behavior 

deviates from the bubbly flow findings, and they do not undergo a change in flow regime in the 
sense discussed above. The minimum attenuation time constant r is plotted against the solid volume 
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fraction for the three groups of total flux, which describe the same behavior. They all have a 
maximum at v g 15-20%. In this range of solids concentration therefore, fluctuations in the volume 
fraction are attenuated the most rapidly, and the mixture is most stable. At higher volume fractions 
(>20%), the attenuation constant x gradually decreases from a maximum of 0.025 to 0.0015 at 
v = 55%. This gradual decrease, which differs from the sudden drop experienced with the 
bubbly flows asymptotes to the horizontal axis. There, the flow assumes a plug-like nature in 
which no relative motion between the particles can be observed, although the particles remain 
supported by the fluid at all times (no bridging), as verified by measurements of the vertical liquid 
pressure gradient. For a plug flow, the IVFM signals at the two monitoring locations become 
progressively similar but for an inherent time lag. The corresponding attenuation constant would 
then tend to 0 for all wavenumbers (coherence of 1). Even though the highest flows considered 
were not true plug flows, low values of x (<0.003) were obtained for flows with v 1> 40%. 
Consistent with the onset of plug flow is the drop in x for all wavenumbers at the higher volume 
fractions. 

The most favored wavenumber, nmin, assumes values of 0.04 + 0.02 for solid fractions up to 40%, 
corresponding to wavelengths of 0.5 + 0.25 m. At higher concentrations at which broad band 
persistence of volume fraction fluctuations becomes evident, the minimum in the attenuation time 
constant becomes less well-defined, and nmi n ceases to provide useful insight. 

In summary, the ability of the particles to withstand particle-particle forces has a stabilizing 
effect at high volume fractions and no distinct change in the flow regime takes place. This is in 
contrast to bubbly flows of high air volume fraction, in which the bubble shape cannot be 
maintained and close encounters between bubbles lead to coalescence and a regime change. 

7. C O N C L U S I O N  

In this paper, the dispersion and attenuation relations for kinematic wave propagation were 
determined experimentally for vertical kinematically stable monodispersed bubbly and particulate 
flows. This study was limited to low flow velocities and a large hydraulic diameter pipe (10 cm) 
in comparison with the tubes used in other air-water studies and thin two-dimensional fluidized 
beds used in particulate fluidization studies. The measurements were based on naturally occurring 
fluctuations in the volume fraction, and it was confirmed that all measurable perturbations were 
non-dispersive. Based on the measurements, the attenuation time constant of traveling concen- 
tration waves was calculated in terms of a reference frame moving with the wave. The results in 
relation to observations of flow nature are discussed below. 

7. I. Bubbly flows 
Stable bubbly flows were sustained up to an unusually high volume fraction of 44.3%, above 

which the flow underwent transition into the churn-turbulent regime. The following conclusions 
can be drawn regarding the wave propagation results: 

• The attenuation time constant gradually decreases up to a gas volume fraction of 
40%, above which it takes a sharp drop and, if extrapolated, it reaches zero at 

Table I. Dimensional kinematic wave at tenuation constant  
x for stable bubbly flows in a vertical 102 m m  pipe" 

= 0.082 ~ = 0.295 e = 0.44 

).(m) k(s -I) 2(m) k(s -1) 2(m) k(s - t)  

1.25 4.7 1.48 6.0 2.50 0.60 
0.23 2.6 0.37 1.8 1.26 0.24 
0.15 4.5 0.19 3.8 0.37 0.84 

"This quanti ty is presented as measured by an observer 
following the wave. x is given for three values of  void 
fraction, as a function of  the wavelength 2. These data 
show the drop in at tenuation at the wavelengths which 
are the most  persistent. 

Table 2. Dimensional kinematic wave at tenuation constant  
x, computed from the gain factor data for stable bubbly 
flows in a 25 mm circular pipe; data taken from Tournaire 's  

(1987) doctoral t h e s i s  a 

= 0.047 e = 0.123 e = 0.255 

2(m) k(s i) 2(m) k(s -I) 2(m) k(s -I) 

0.44 0.095 0.52 0.10 0.88 0.140 
0.31 0.340 0.32 0.18 0.55 0.000 
0.17 0.450 0.17 0.39 0.45 0.072 

"x is presented as measured by an observer following the 
wave. These data show a monotonic  decrease in x with 
2 at the lower void fractions, and a min imum in attenu- 
ation at the most  persistent wavelength prior to the flow 
regime transition. 
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e = 45 + 0.5%. This coincides with an observed change in regime close to the same 
value (45%). These two findings provide strong evidence for the view that the 
regime change is a consequence of the loss of kinematic instability. This idea has 
been suggested previously by Matuszkiewicz et al. (1987) in the context of regime 
change from bubbly flow to slug flow in a small square channel (2 x 2 cm2), but 
it has not been demonstrated for the transition to churn-turbulence in larger pipes. 
The most persistent wave length is observed to increase from 0.3 m at ~ = 10% to 
0.8 m at e = 44.3%. This large wavelength is the first to become unstable, and its 
growth results in the transition to churn-turbulence. 

7.2. Solid-liquid flows 

Vertical downward solid-liquid flows were studied up to a volume fraction of 56%. These did 
not develop any instabilities but at high concentrations (v = 40%) a gradual transition to plug flow 
occurred, while the solids always remained suspended in the fluid (no bridging). This was ensured 
by means of pressure gradient measurements. The most persistent perturbation wavelength 
remained approximately constant at 0.5 + 0.2 m up to v = 40%. Above this concentration all 
wavelengths become gradually more coherent. This is a consequence of the rigid structure of plug 
flow, and not an indication of a gradual loss of stability. 

The minimum attenuation of perturbations following the wave exhibits a repeatable and distinct 
non-monotonic pattern with respect to solids concentration. It has a maximum between 15-20%, 
indicating that the dispersed mixture (excluding plug flows) is the most stable in this range of 
concentrations. The time constant falls offmore sharply at lower rather than higher concentrations, 
at which it asymptotes to zero as plug flow sets in. An account of similar behavior was only found 
in one published article. Didwania & Homsy (1981) observed that in a two-dimensional fluidized 
bed, visible horizontal kinematic waves propagated up the bed at high concentrations. With a 
decrease in the bed solids fraction (increase in fluidization flowrate) the instabilities disappeared, 
to reappear at yet lower solids fractions in the form of "bubbles" that were small in relation to 
the observed waves. 

This study demonstrates the difference between bubbly and particulate flows at high concen- 
trations. The rigidity of solid particles, and hence their ability to sustain forces without appreciable 
deformation, has a noticeable stabilizing effect which leads to the formation of plug flow. Bubbles, 
which are only held together by surface tension, do not have the mechanism to resist kinematic 
instability, and consequently undergo transition to churn-turbulence. These results are consistent 
with the findings of Homsy et al. (1980), Jackson (1985) and Batchelor (1988), that show that 
sustainable particle-particle interactions that do not result in particle agglomeration or coalescence 
have a stabilizing effect. 
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